วันพุธที่ 9 กันยายน พ.ศ. 2558

ความสัมพันธ์และฟังก์ชัน

1)คู่อันดับ : เขียนคู่อันดับในรูป (a,b) โดยที่ a เป็นสมาชิกตัวหน้า และ b เป็นสมาชิกตัวคู่หลัง คู่อันดับสองคู่อันดับใดๆ จะเท่ากัน ก็ต่อเมื่อสมาชิกตัวหน้าและสมาชิกตัวหลังของทั้งสองคู่อันดับนี้เท่านั้น
(a, b) = (c,d) เมื่อ a= c และ b = d
2) ผลคูณคาร์ทีเซียน : ผลคูณคสร์ทีเซียนของเซต A และ B เขียนแทนด้วย A x B หมายถึง เซตของคู่อันดับ (X , Y ) ทั้งหมด โดยที่ X เป็นสมาชิกเซต A และ Y เป็นสมาชิกของเซต B
A x B = {(x ,y) | x A และ y B } อ่านเพิ่มเติม





จำนวนจริง

4.1จำนวนจริง
เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ ได้แก่
- เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย I
I = {1,2,3…}
- เซตของจำนวนเต็มลบ เขียนแทนด้วย I
- เซตของจำนวนเต็ม เขียนแทนด้วย I
I = { …,-3,-2,-1,0,1,2,3…}
- เซตของจำนวนตรรกยะ : เซตของจำนวนจริงที่สามารถเขียนได้ในรูปเศษส่วน โดยที่ a,b เป็นจำนวนเต็ม และ b = 0   อ่านเพิ่มเติม



การให้เหตุผล

การให้เหตุผลทางคณิตศาสตร์ที่สำคัญมีอยู่ 2 วิธี คือ
3.1การให้เหตุผลแบบอุปนัย (Inductive Reasoning) เป็นการสรุปผลในการค้นหาความจริงจากการสังเกต หรือการทดลองหลายครั้งจากกรณีย่อยๆ แล้วนำมาสรุปเป็นความรู้แบบทั่วไป ซึ่งข้อสรุปที่ไม่จำเป็นต้องถูกต้องทุกครั้ง
3.2การให้เหตุผลแบบนิรนัย (Deductive Reasoning ) เป็นการนำสิ่งที่ยอมรับว่าเป็นจริงมาประกอบเพื่อนำไปสู่ข้อสรุปจากสิ่งที่ยอมรับแล้ว
- การสรุปที่สมเหตุสมผล (Valid) คือ ข้ออ้างหรือเหตุที่เป็นจริงเป็นผลให้ได้ข้อสรุปที่ถูกต้อง
- การสรุปผลที่ไม่สมเหตุสมผล (Invalid) คือ ข้ออ้างหรือเหตุเป็นจริง แต่ไม่เป็นผลให้ไดข้อสรุปที่ถูกต้อง   อ่านเพิ่มเติม


เซต

เซต เป็นคำที่ใช้บ่งบอกถึงกลุ่มของสิ่งต่างๆ และเมื่อกล่าวถึงกลุ่มใดแน่นอนว่าสิ่งใดอยู่ในกลุ่ม สิ่งใดไม่อยู่ในกลุ่ม เช่น เซตสระในภาษาอังกฤษ หมายถึง กลุ่มของอังกฤษ a, e, i, o และ u
เซตของจำนวนนับที่น้อยกว่า 10 หมายถึง กลุ่มตัวเลข 1,2,3,4,5,6,7,8,และ9
สิ่งที่ในเชตเรียกว่า สมาชิก ( element หรือ members )  อ่านเพิ่มเติม